Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Rong Su, Yu Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.046$
$w R$ factor $=0.091$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[bis(1H-benzimidazole- κN^{3})-cobalt(II)]- μ-isophthalato- $\left.\kappa^{2} O: O^{\prime}\right]$

In the title polymeric complex, $\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]_{n}$, the $\mathrm{Co}^{\mathrm{II}}$ atom assumes distorted tetrahedral coordination geometry formed by two isophthalate dianions and two benzimidazole molecules. The isophthalate dianions bridge $\mathrm{Co}^{\mathrm{II}}$ atoms through carboxy groups to form a one-dimensional polymeric association. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions occur between adjacent aromatic rings.

Comment

As part of our ongoing research on non-covalent interactions, the title $\mathrm{Co}^{\text {II }}$ complex, (I), bridged by isophthalate dianions, has been prepared, and its crystal structure is presented here to discuss the interaction between aromatic rings.

(I)

The asymmetric unit of (I) consists of a $\mathrm{Co}^{\mathrm{II}}$ cation, a $\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)^{2-}$ isophthalate dianion and two $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}$ BZIM (benzimidazole) molecules (Fig. 1). While two BZIM species coordinate to a $\mathrm{Co}^{\mathrm{II}}$ atom, two isophthalate dianions, related by translation symmetry along the c axis, each coordinate in a monodentate manner to the $\mathrm{Co}^{\mathrm{II}}$ atom to complete the

Figure 1
The molecular structure of (I) shown with 30% probability displacement ellipsoids and H atoms represented by small spheres. The dashed line shows the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction [symmetry codes: (i) $x, y, z-1$; (iv) x, y, $1+z]$.

Figure 2
The molecular packing of (I); dashed lines indicate the hydrogen bonding between N13-BZIM and the carboxy group from the adjacent polymeric chain. [Symmetry code: (ii) $x-\frac{1}{2}, \frac{3}{2}-y, z$.]

Figure 3
The molecular packing of (I); dashed lines indicate the hydrogen bonding between N23-BZIM and the carboxy group from the adjacent polymeric chain. [Symmetry code: (iii) $-x, 1-y, z-\frac{1}{2}$.]
distorted tetrahedral coordination geometry. The $\mathrm{N} 11-\mathrm{Co}-$ N 21 bond angle is some $24.00(15)^{\circ}$ larger than the $\mathrm{O} 1-\mathrm{Co}-$ O3 bond angle (Table 1). Uncoordinated carboxy atoms O1 and O4 accept hydrogen bonds from BZIM N-H moieties of an adjacent polymeric chain, as shown in Figs. 2 and 3.

The following $\mathrm{H} \cdots C g$ distances and $\mathrm{C}-\mathrm{H} \cdots C g$ angles ($C g=$ the centroid of the ring) indicate the presence of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between aromatic rings in (I): $\mathrm{H} 14 \cdots C g\left(\right.$ isophthalate $\left.{ }^{\mathrm{v}}\right) \quad=\quad 2.81 \AA$ and $\mathrm{C} 14-$ H14 $\cdots C g$ (isophthalate ${ }^{\mathrm{v}}$) $=156^{\circ}$ [symmetry code: (v) $\frac{1}{2}-x$, $\left.\frac{1}{2}+y, z-\frac{1}{2}\right] ; \mathrm{H} 26 \cdots C g\left(\mathrm{~N}_{1} 1-\mathrm{BZIM}^{\text {vi }}\right)=2.91 \AA$ and $\mathrm{C} 26-$ $\mathrm{H} 26 \cdots C g\left(\mathrm{~N} 11-\mathrm{BZIM}^{\mathrm{vi}}\right)=175^{\circ}$ [symmetry codes: (vi) $\frac{1}{2}-x$, $\left.y-\frac{1}{2}, z-\frac{1}{2}\right]$.

Aromatic $\pi-\pi$ stacking has commonly been found between BZIM rings in metal complexes (Liu et al., 2004), but does not occur in (I).

Experimental

An ethanol solution (5 ml) of BZIM $(0.24 \mathrm{~g}, 2 \mathrm{mmol})$ was mixed with an aqueous solution $(5 \mathrm{ml})$ of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.48 \mathrm{~g}, 2 \mathrm{mmol})$, and the mixture was refluxed for 20 min . Then an aqueous solution (8 ml) containing isophthalic acid $(0.33 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{NaOH}(0.16 \mathrm{~g}$,

4 mmol) was added into the above mixture, and the solution was refluxed for a further 2.5 h . After cooling to room temperature, the solution was filtered. Red single crystals of (I) were obtained from the filtrate after one week.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=459.32$
Orthorhombic, Pna_{1}
$a=11.5641$ (5) £
$b=17.8801$ (3) \AA
$c=10.1058$ (4) \AA
$V=2089.55(13) \AA^{3}$
$Z=4$
$D_{x}=1.460 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.87, T_{\text {max }}=0.94$
19285 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.091$
$S=1.11$
4412 reflections
274 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

$\mathrm{Co}-\mathrm{O} 1$	$2.018(3)$	$\mathrm{Co}-\mathrm{N} 11$	$2.022(2)$
$\mathrm{Co}-\mathrm{O} 3^{\mathrm{i}}$	$1.984(3)$	$\mathrm{Co}-\mathrm{N} 21$	$2.033(2)$
O1-Co-O3			
$\mathrm{O} 1-\mathrm{Co}-\mathrm{N} 11$	$94.91(11)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Co}-\mathrm{N} 11$	$105.74(13)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{N} 21$	$107.21(12)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Co}-\mathrm{N} 21$	$111.23(13)$

Symmetry code: (i) $x, y, z-1$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N13-H13 $\cdots \mathrm{O}^{\mathrm{iii}}$	0.86	1.92	$2.781(5)$	176
N23-H23 $\mathrm{O}^{\text {iii }}$	0.86	1.89	$2.735(4)$	169
C22-H22 $\cdots \mathrm{O} 2$	0.93	2.53	$2.978(5)$	110

Symmetry codes: (ii) $x-\frac{1}{2}, \frac{3}{2}-y, z$; (iii) $-x, 1-y, z-\frac{1}{2}$.
H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and were included in the final cycles of refinement in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

metal-organic papers

This project was supported by the National Natural Science Foundation of China (29973036).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Liu, B.-X., Su, J.-R. \& Xu, D.-J. (2004). Acta Cryst. C60, m183-m185.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

